Minigenes encoding N-terminal domains of human cardiac myosin light chain-1 improve heart function of transgenic rats.

نویسندگان

  • Hannelore Haase
  • Gisela Dobbernack
  • Gisela Tünnemann
  • Peter Karczewski
  • Cristina Cardoso
  • Daria Petzhold
  • Wolfgang-Peter Schlegel
  • Steffen Lutter
  • Petra Pierschalek
  • Joachim Behlke
  • Ingo Morano
چکیده

In this study we investigated whether the expression of N-terminal myosin light chain-1 (MLC-1) peptides could improve the intrinsic contractility of the whole heart. We generated transgenic rats (TGR) that overexpressed minigenes encoding the N-terminal 15 amino acids of human atrial MLC-1 (TGR/hALC-1/1-15, lines 7475 and 3966) or human ventricular MLC-1 (TGR/hVLC-1/1-15, lines 6113 and 6114) isoforms in cardiomyocytes. Synthetic N-terminal peptides revealed specific actin binding, with a significantly (P<0.01) lower dissociation constant (K(D)) for the hVLC-1/1-15-actin complex compared with the K(D) value of the hALC-1/1-15-actin complex. Using synthetic hVLC-1/1-15 as a TAT fusion peptide labeled with the fluorochrome TAMRA, we observed specific accumulation of the N-terminal MLC-1 peptide at the sarcomere predominantly within the actin-containing I-band, but also within the actin-myosin overlap zone (A-band) in intact adult cardiomyocytes. For the first time we show that the expression of N-terminal human MLC-1 peptides in TGR (range: 3-6 muM) correlated positively with significant (P<0.001) improvements of the intrinsic contractile state of the isolated perfused heart (Langendorff mode): systolic force generation, as well as the rates of both force generation and relaxation, rose in TGR lines that expressed the transgenic human MLC-1 peptide, but not in a TGR line with undetectable transgene expression levels. The positive inotropic effect of MLC-1 peptides occurred in the absence of a hypertrophic response. Thus, expression of N-terminal domains of MLC-1 represent a valuable tool for the treatment of the failing heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of the cardiac troponin I N-terminal extension improves cardiac function in aged mice.

The cardiac troponin I (cTnI) isoform contains a unique N-terminal extension that functions to modulate activation of cardiac myofilaments. During cardiac remodeling restricted proteolysis of cTnI removes this cardiac specific N-terminal modulatory extension to alter myofilament regulation. We have demonstrated expression of the N-terminal-deleted cTnI (cTnI-ND) in the heart decreased the devel...

متن کامل

Cardiac gene expression profile in rats with terminal heart failure and cachexia.

About one-half of double transgenic rats (dTGR) overexpressing the human renin and angiotensinogen genes die by age 7 wk of terminal heart failure (THF); the other (preterminal) one-half develop cardiac damage but survive. Our study's aim was to elucidate cardiac gene expression differences in dTGR-THF compared with dTGR showing compensated cardiac hypertrophy but not yet THF. dTGR treated with...

متن کامل

The Effects of Neuregulin on Cardiac Myosin Light Chain Kinase Gene-Ablated Hearts

BACKGROUND Activation of ErbB2/4 receptor tyrosine kinases in cardiomyocytes by neuregulin treatment is associated with improvement in cardiac function, supporting its use in human patients with heart failure despite the lack of a specific mechanism. Neuregulin infusion in rodents increases cardiac myosin light chain kinase (cMLCK) expression and cardiac myosin regulatory light chain (RLC) phos...

متن کامل

Remodeling of the heart in hypertrophy in animal models with myosin essential light chain mutations

Cardiac hypertrophy represents one of the most important cardiovascular problems yet the mechanisms responsible for hypertrophic remodeling of the heart are poorly understood. In this report we aimed to explore the molecular pathways leading to two different phenotypes of cardiac hypertrophy in transgenic mice carrying mutations in the human ventricular myosin essential light chain (ELC). Mutat...

متن کامل

cTnT1, a cardiac troponin T isoform, decreases myofilament tension and affects the left ventricular pressure waveform.

Four isoforms of cardiac troponin T (cTnT), a protein essential for calcium-dependent myocardial force development, are expressed in the human; they differ in charge and length. Their expression is regulated developmentally and is affected by disease states. Human cTnT (hcTnT) isoform effects have been examined in reconstituted myofilaments. In this study, we evaluated the modulatory effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 2006